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Abstract

We employ a Lagrangian-Lagrangian (LL) numerical formalism to study two-

and three-dimensional (2D, 3D) pipe flow of dilute suspensions of macro-

scopic neutrally buoyant rigid bodies at flow regimes with Reynolds numbers

(Re) between 0.1 and 1400. A validation study of particle migration over

a wide spectrum of Re and average volumetric concentrations demonstrates

the good predictive attributes of the LL approach adopted herein. Using a

scalable parallel implementation of the approach, 3D direct numerical sim-

ulation is used to show that (1) rigid body rotation affects the behavior of

a particle laden flow; (2) an increase in neutrally buoyant particle size de-

creases radial migration; (3) a decrease in inter-particle distance slows down

the migration and shifts the stable position further away from the channel

axis; (4) rigid body shape influences the stable radial distribution of particles;

(5) particle migration is influenced, both quantitatively and qualitatively, by

the Reynolds number; and (6) the stable radial particle concentration dis-

tribution is affected by the initial concentration. The parallel LL simulation
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framework developed herein does not impose restrictions on the shape or

size of the rigid bodies and was used to simulate 3D flows of dense, colloidal

suspensions of up to 23,000 neutrally buoyant ellipsoids.
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1. Introduction

The topic of particle migration has been of great interest since Segre and

Silberberg experimentally investigated the pipe flow of a dilute suspension of

spherical particles and demonstrated that, at a pipe Reynolds number (Re)

between 2 and 700, the particles settle on an annulus with an approximate

relative radius of 0.6 with respect to the pipe radius [64, 65]. Subsequent

experiments conducted by Oliver [53], Jeffrey and Pearson [32], and Karnis

et al. [34] confirmed and further investigated the particle radial migration.

For dilute suspensions, Matas et al. [42] showed experimentally that the

radius of stable annulus increases directly with Re. At a high Reynolds num-

ber, Re>650, they observed the formation of an inner annulus of smaller

radius that had not been predicted analytically or observed through simu-

lation. Moreover, they showed that the probability of a particle settling on

this annulus of smaller radius increases with the Reynolds number. From an

analytical perspective, perturbation methods have been widely employed to

investigate the lift force responsible for particle migration, see for instance

Saffman [61], Ho and Leal [26], Vasseur and Cox [71], Schonberg and Hinch
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[63], Hogg [28], Asmolov et al. [2], and Matas et al. [43]. Particle migration

has also been investigated in a number of numerical simulation studies. Feng

et al. [19] employed a Finite Element Method (FEM) to study the migra-

tion of a single circular cylinder in plane Poiseuille flow. Inamuro et al. [31]

investigated a similar problem using a Lattice Boltzmann Method (LBM).

Chun and Ladd employed LBM to investigate the migration of spheres in a

square duct at Re<1000 [11]. They showed that the stable lateral position

of a single particle moves closer to the duct wall as the Reynolds number

increases. For flows containing several particles, a first stable particle config-

uration forms at Re<300; a secondary stable region nearer to the center of

the duct is observed at Re>700. Pan and Glowinski developed the method of

Distributed Lagrange Multiplier/Fictitious Domain Method (DLM/FDM) in

conjunction with a finite difference approach to investigate the shear induced

migration of a circular cylinder [22] and a collection of spheres [57]. Shao et

al. [66] investigated the motion of spheres in steady Poiseuille flow at mod-

erately high Re using DLM/FDM. Their work confirmed the development

of an inner stable annulus at high Re, i.e., Re ≥ 640 for specific size and

channel length ratio. Yu et al. [73] investigated the sphere sedimentation as

well as the migration of a sphere in Poiseuille flow at Re<400 via the DLM

method. Hu [30] and Hu et al. [29] employed the Arbitrary Lagrangian-

Eulerian (ALE) method on a body-fitted unstructured finite element grid to

simulate fluid-solid systems. Their work influenced that of Patankar et al.

[58, 59] and Choi and Josef [9] in their study of the lift-off of cylinders in

plane Poiseuille flow. Similar techniques have been considered to study the

behavior of a non-spherical particle, usually an ellipsoid in fluid flow. Swami-
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nathan et al. [69] used ALE based FEM to simulate the sedimentation of an

ellipsoid. Pan et al. [54] investigated the motion of ellipsoid in Poiseuille flow

using DLM/FDM. In several other studies the investigation of flows contain-

ing a collection of cylinders (2D) [8, 20, 67] and spheres (3D) [11, 29] was

carried out via direct numerical simulation with the LBM [11, 20], Lagrange

multiplier based fictitious domain method [8, 56, 67], and ALE-based FEM

[29].

All these numerical studies of particle suspension and migration draw

on an Eulerian-Lagrangian representation of the fluid-solid system. In this

contribution, we employ a Lagrangian-Lagrangian (LL) approach to study

the particle migration over a wide range of Reynolds numbers. The Smoothed

Particle Hydrodynamics (SPH) method [21, 41] is relied upon for the fluid

flow simulation. The SPH method is extensively reviewed in Monaghan [47]

and Liu and Liu [40]. Herein, the Navier-Stokes equations, solved within the

SPH framework, are coupled with Newton’s equations of motion for rigid

body dynamics to investigate, in a unitary framework, flows that include

rigid bodies of arbitrary geometries. We used and validated the coupling

algorithm reported in [60]. The possible solid to solid contacts, if any, are

resolved via a lubrication force model [39].

The document is organized as follows: section 2 provides an overview of

the numerical solution and its parallel implementation. Section 3 presents a

set of validations of the proposed approach in relation to experiments that

involve particle migration and distribution at 1<Re<1400. The distribution

validation exhibits more complexity than capturing only the stable radial

position since attention must be paid to the rate of migration to the stable
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configuration. In section 4, we report results of several parametric studies

that investigate the effect of particle shape, size, distance, and concentra-

tion on particle radial migration. A scaling analysis carried out for a dense

colloidal suspension of ellipsoids concludes the numerical experiment section.

2. Fluid-solid interaction simulation methodology

The SPH-based approach used herein to represent the dynamics of fluid

flow accounts for the two-way coupling with rigid body dynamics by regard-

ing body geometries as moving boundaries. The 3D rigid body rotation is

characterized by means of a set of four Euler parameters [25]. In terms of

notation, the term “marker” is employed to denote the SPH discretization

point and “particle” to refer to a 3D rigid body, although the latter has

geometry and experiences 3D rotation during its time evolution.

2.1. The Smoothed Particle Hydrodynamics method

An in-depth discussion of the SPH method and recent developments can

be found in [40, 44, 47]. Herein, we highlight the essential components re-

quired to express the fluid-solid coupling.

SPH is a Lagrangian method that probes the fluid domain at a set of

moving markers. Each marker has an associated kernel function with com-

pact support that defines its domain of influence, as shown in Figure 1. The

choice of kernel function W is not unique. A cubic spline interpolation kernel

[48] was used in this work. At a point located by a position vector r with

5



respect to an SPH marker, the cubic spline interpolation kernel is defined as

W (q, h) =
1

4πh3
×


(2− q)3 − 4(1− q)3, 0 ≤ q < 1

(2− q)3, 1 ≤ q < 2

0, q ≥ 2

, (1)

where h is the kernel function’s characteristic length and q ≡ |r| /h. The

radius of the support domain, κh, is proportional to the characteristic length

h through the parameter κ which is equal to 2 in the kernel function defined

by Eq. (1). Although, a constant h was considered herein, using a vari-

able h may be beneficial in some applications such as wave propagation in

compressible flow [47].

Figure 1: Illustration of the kernel, W , and support domain, S – shown for marker a. For

2D problems the support domain is a circle, while for 3D problems it is a sphere. SPH

markers are shown as black dots.

The cubic spline kernel given in Eq. (1) is the most common smoothing

kernel in one, two, and three dimensions owing to its reduced computational

burden – a consequence of the small number of neighboring SPH markers typ-

ically required by the approach. Other researchers suggested that a smoother
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second order derivative of the interpolation kernel can improve the SPH sta-

bility [40, 51, 70]. In [50] it was shown that the dispersion relation for linear

waves can be undesirable for cubic splines with κ = 2. However, depending

on the application, the artifacts can be negligible. Kernels that approximate

the Gaussian function; i.e., higher order splines such as quartic (κ = 2.5) and

quintic (κ = 3), have been shown to produce better results at the expense

of a higher computational burden [51]. Similarly, Colagrossi and Landrini

[12] tested third and fifth order B-splines as well as cut-normalized Gaussian

kernels (κ = 3), and recommended the latter.

Using the SPH framework, the continuity and momentum equations,

given respectively by

dρ

dt
= −ρ∇·v , (2)

and

dv

dt
= −1

ρ
∇p+

µ

ρ
∇2v + f , (3)

are discretized as [49]

dρa
dt

= ρa
∑
b

mb

ρb
(va − vb) ·∇aWab , (4)

and

dva
dt

= −
∑
b

mb

(
(
pa
ρa2

+
pb
ρb2

)∇aWab + Πab

)
+ fa . (5)

In Eq. (5), indices a and b denote the SPH markers, as shown in Figure 1,

and

Πab = −(µa + µb)xab·∇aWab

ρ̄2ab(x
2
ab + εh̄2ab)

vab (6)
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imposes the viscous force based on the discretization of the ∇2 operator. In

terms of notation, ρ and µ are the fluid density and viscosity, respectively; v

and p are flow velocity and pressure, respectively; m is the mass associated

with an SPH marker; f is the volumetric force; t is the real time; xab is the

relative distance between markers a and b, i.e. xab = xa−xb; Wab ≡ W |r=xab
;

∇a is gradient with respect to xa, i.e. ∂/∂xa; quantities with over-bar are

the average of the same quantities for markers a and b; ε is a regularization

coefficient, and the summation is over all markers within the support domain

of marker a. We have evaluated several definitions for the viscosity as well as

discretization of ∇2 [47, 49] in conjunction with the simulation of transient

Poiseuille flow and concluded that Πab of Eq. (6) led to the most accurate

results in the widest range of Reynolds numbers. Moreover, Eq. (6) replaces

the tuning parameters used in artificial viscosity [47] with physics-based fluid

viscosity. This results are in agreement with [4], where different viscosity

discretization approaches for a low Reynolds number simulation of transient

Poiseuille flow were investigated.

The pressure p is evaluated using an equation of state [5, 13, 47]

p =
cs

2ρ0
γ

{(
ρ

ρ0

)γ
− 1

}
, (7)

where ρ0 is the reference density of the fluid, γ tunes the stiffness of the

pressure-density relationship and normally has the value γ = 7, and cs is

the speed of sound. In the weakly compressible SPH method, cs is ad-

justed depending on the maximum speed of the flow, Vmax, to keep the flow

compressibility below any arbitrary value. Monaghan suggested the use of

cs = 10Vmax for a compressibility less than 1% [47]. The analysis leading to

this conclusion neglects the numerical artifacts introduced by the particle ap-
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proximation. In practice, we observed larger compressibility. By increasing

the numerical value of cs, e.g. up to cs = 50Vmax, the flow incompressibility

was improved at the expense of smaller integration time steps.

The fluid flow equations (4) and (5) are solved in conjunction with Eq.

(8) to update the position of the SPH markers:

dxa
dt

= va. (8)

Compared to Eq. (4), which evaluates the time derivative of the density,

the original SPH summation formula calculates the density according to

ρa =
∑
b

mbWab. (9)

Equation (4) was preferred to Eq. (9) since it produced a smooth density field

and worked well for markers close to the boundaries, i.e., the free surface,

solid, and wall. However, Eq. (4) does not guarantee consistency between

a marker’s density and associated mass and volume [6, 46, 49]. Using Eq.

(9) has problems of its own, e.g., the density field can experience large vari-

ations, particularly close to the boundary. One of the approaches suggested

to resolve this issue is to combine the two methods in a so-called “density

re-initialization technique” [12] in which Eq. (4) is implemented at each time

step while Eq. (9) corrects the mass-density inconsistency every n time steps.

The results reported herein were obtained with n = 10. The Moving Least

Squares method or a normalized version of Eq. (9) could alternatively be

used to address the aforementioned issues [12, 15].

Finally, we employ the extended SPH approach, XSPH, which prevents

extensive overlap of markers support domain and enhances incompressibility
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of the flow [45]. This correction takes into account the velocity of neighboring

markers through a mean velocity evaluated within the support of a nominal

marker a as

〈va〉 = va + ∆va, (10)

where

∆va = ζ
∑
b

mb

ρ̄ab
(vb − va)Wab, (11)

and 0 ≤ ζ ≤ 1 adjusts the contribution of the neighbors’ velocities. All the

results reported herein were obtained with ζ = 0.5. The modified velocity

calculated from Eq. (10) replaces the original velocity in the density and

position update equations, but not in the momentum equation [12].

2.2. Rigid body dynamics

The dynamics of the rigid bodies is fully characterized by the Newton-

Euler equations of motion, see for instance [25],

dVi

dt
=

Fi

Mi

, (12)

dXi

dt
= Vi, (13)

dω′i
dt

= J′i
−1
(
T′i − ω̃′

iJ
′
iω
′
i

)
, (14)

dqi
dt

=
1

2
Gi

Tω′i, (15)

and

qi
Tqi − 1 = 0, (16)
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where Fi, T
′
i, Xi, Vi, ω

′
i, ∈ R3, denote the force, torque, position, velocity,

and angular velocity associated to body i, respectively; qi =
[
qix, q

i
y, q

i
z, q

i
w

]T
,

J′i and Mi, are the rotation quaternion, moment of inertia, and mass, respec-

tively; and i ∈ {1, 2, 3, ..., nb} is the rigid body index where nb is the total

number of rigid bodies in the system. Quantities with a prime symbol are

represented in the rigid body local reference frame. Given ω′
i = [ωx, ωy, ωz]

T

and q = [qx, qy, qz, qw]T , the auxiliary matrices ω̃′
i and G are defined as [25]

ω̃′
i =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

, G =


−qy qx qw −qz
−qz −qw qx qy

−qw qz −qy qx

 . (17)

2.3. Fluid-solid interaction

The two-way fluid-solid coupling was implemented based on a method-

ology described in [60]. The state update of any SPH marker relies on the

properties of its neighbors and resolves shear as well as normal inter-marker

forces. For the SPH markers close to solid surfaces, the SPH summations

presented in Eqs. (4), (5), (9), and (11) capture the contribution of fluid

markers. The contribution of solid objects is calculated via Boundary Con-

dition Enforcing (BCE) markers placed on and close to the solid’s surface as

shown in Figure 2. The velocity of a BCE marker is obtained from the rigid

body motion of the solid and as such it ensures the no-slip condition on the

solid surface. Including BCE markers in the SPH summation equations, i.e.

Eqs. (4) and (5), results in fluid-solid interaction forces that are added to

both fluid and solid markers.

Once the fluid-solid interaction between individual markers, i.e., the right

hand side of Eqs. (4) and (5), is accounted for, the total rigid body force and
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Figure 2: BCE and fluid markers, key for the coupling between fluid and solid, are repre-

sented by black and white circles, respectively. A section of the rigid body is shown herein

as the gray area. The BCE markers positioned in the interior of the body (markers g and

f in the figure) are placed at a depth less than or equal to the size of the compact support

associated with the kernel function W .

torque due to the interaction with the fluid can be obtained by respectively

summing the individual forces and their induced torques over the entire rigid

body. They are then added to the other forces, including external and contact

forces.

2.4. Short range interaction

Dry friction models, typically used to characterize the dynamics of gran-

ular materials [1, 36, 37], do not capture accurately the impact of solid sur-

faces in hydrodynamics media. In practice, it is infeasible to fully resolve

the short-range, high-intensity forces associated with impact in wet media

due to computational limits on space resolution and time step. By assuming

smooth surfaces, Davis et al. followed the Hertz contact theory of linear
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elasticity to calculate the pressure at the interface of two approaching elastic

spheres in close proximity [14]. Their calculation showed that particles do

not rebound at small Stokes number, St = (2/9)(ρp/ρ)Rep, where ρp and Rep

are particle density and particle Reynolds number, respectively. The mini-

mum St for a rebound after the hydroelastic impact depends on the spheres’

rigidity. For rigid spheres, rebound happens at St > 10. An alternative

approach to calculate the singular forces at contact relies on lubrication the-

ory [17]. Ladd [39] proposed a normal lubrication force between two spheres

that increases rapidly as the distance between spheres approaches zero thus

preventing the actual touching of the spheres:

Flub
ij = min

{
−6πµ

(
aiaj
ai + aj

)2(
1

s
− 1

∆c

)
, 0

}
· vnij

, (18)

where, ai and aj are the sphere radii, vnij
is the normal component of the

relative velocity, s is the distance between surfaces, and ∆c is a cut-off value

that controls the extent of short range interaction: for s > ∆c, Flub
ij = 0,

and the spheres are subject only to hydrodynamic forces. Ladd and Verberg

[38] demonstrated good agreement of the proposed lubrication force with

Brenner’s exact solution [7].

Equation (18) provides a basic model for the estimation of the lubrication

force in normal direction. The calculation of the partial lubrication force

between non-spherical surfaces follows the approach proposed in [16] for a

LBM formulation yet it is amended to fit the Lagrangian formulation adopted
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herein. Accordingly, the force model provided in Eq. (18) is modified as

Flub
ij =

∑
k

fkij,

with fkij = min

{
−3

2
πµh2

(
1

s∗
− 1

∆c

)
, 0

}
· v∗nij

,

(19)

where s∗ and v∗nij
denote the markers’ relative distance and velocity, respec-

tively, and the summation is over all interacting markers of the two solid

objects.

2.5. Simulation algorithm

The time evolution of the system is calculated using a second order ex-

plicit Runge-Kutta method [3]. At the beginning of each time step, a neigh-

bor list is assembled to indicate the set of markers that fall within the kernel

support of each marker; if N markers are used in the simulation, N lists are

generated. The force components appearing on the right hand side of Eqs.

(4), (5), and (19) are subsequently computed based on these neighbor lists.

Two different functions are called to capture the interaction between markers

according to their types, i.e., fluid or solid, via SPH or the short range inter-

action model described in section 2.4. In the second stage, the state of the

fluid markers, including position, velocity, and density, is updated based on

Eqs. (4), (5), and (8). The state of each rigid body is updated according to

Eqs. (12) through (15). Since a rigid wall boundary is a particular instance

of a rigid body (with zero or other pre-defined velocity), it requires no special

treatment.

The above algorithm was implemented to execute in parallel on Graphics

Processing Unit (GPU) cards using Compute Unified Device Architecture
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(CUDA) [52]. The hardware used to run the simulations that produced the

results reported in this contribution, NVIDIA Kepler K20X, has 2688 parallel

scalar processors. At each time step, four different tasks are executed on the

GPU to (1) calculate the inter-marker forces, (2) carry out fluid time inte-

gration, (3) carry out rigid body time integration, and (4) enforce boundary

conditions. The lists of neighbors needed to evaluate the inter-marker forces

are generated via a proximity computation algorithm based on a decompo-

sition of the computation domain into cubic bins. The side length of each

bin is roughly equal to the size of the support domain of an SPH marker.

A hash table is used to sort the markers according to their location in the

domain. Based on the sorted hash table, each marker accesses the list of

markers intersecting the self and neighboring bins to calculate the forcing

terms. The proximity computation algorithm uses the parallel sorting and

scan algorithms provided by the Thrust library [27].

To improve the code vectorization through coalesced memory access and

use of fast memory (L1/L2 cache, shared memory, and registers), each com-

putation task was implemented as a sequence of light-weight GPU kernels.

For instance, different computation kernels are implemented to update the

attributes of the rigid bodies, including force, moment, rotation, translation,

linear and angular velocity, and location of the BCE markers. A similar cod-

ing style was maintained for the density re-initialization, boundary condition

implementation, and mapping of the markers’ data on an Eulerian grid for

post processing.
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Table 1: Flow parameters used for the validation of transient Poiseuille flow

density 1000 kg/m3

viscosity 0.001 N s/m2

volumetric force, x-direction 0.005 N/m3

channel width 0.002 m

3. Simulation tool validation

The purpose of this section is to validate the predictive attributes of

the SPH-enabled Lagrangian-Lagrangian framework and the correctness of

its software implementation. To the best of our knowledge, except for the

transient Poiseuille flow in Sect. 3.1, the validation tests discussed next have

not been considered in the context of a Lagrangian-Lagrangian formulation

via SPH.

3.1. Transient Poiseuille flow

SPH was used in [49] to numerically simulate transient Poiseuille flow at

low Reynolds numbers for which an analytical solution is readily available.

Although essentially a 2D problem, for validation purposes, the transient

Poiseuille flow is simulated using a 3D setup: the 2D flow was generated

using periodic boundary conditions on the channel side walls, i.e., in the

direction perpendicular to x and y, see Figure 3. For the set of parameters

provided in Table 1, results show a virtually exact match between the velocity

profiles obtained from the numerical simulation and the analytical solution

reported in [49].
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Figure 3: Velocity profile of transient Poiseuille flow obtained from simulation (dots) and

series solution (continuous lines) at different times. A schematic of the flow is shown in

the top-right corner of the figure to illustrate how the y coordinate is defined.

3.2. Particle migration in 2D Poiseuille flow

Although Segre and Silberberg considered particle migration in pipe flow

[64, 65], a similar phenomenon occurs in plane Poiseuille flow. Maintaining

the setup of Sect. 3.1, infinitely long cylinders were added into the flow. For

a cylinder size a/w = 0.125 and Rec = 12.73, where a, w, and Rec are the

cylinder radius, channel width, and channel Reynolds number, respectively,

we obtained the same stable lateral positions of the immersed bodies as those

reported in [31, 55], with a maximum 1% relative drift with respect to the

channel half width as reported in Table 2. Figure 4 shows the trajectories

of cylinders released from different initial lateral positions, y, versus non-

dimensional time, t∗ = t× V/L, where V denotes the mean flow velocity.
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Table 2: Stable lateral position at Rec = 12.73 and a/w = 0.125

Rec yc

LBM [31] 12.73 0.2745

DLM/FDM [55] 12.78 0.2732

LL approach 12.75 0.2785, 0.7215

Figure 4: Lateral migration of neutrally buoyant circular cylinder in plane Poiseuille flow

at Rec = 12.73 and a/w = 0.125. Each line shows the lateral position of a cylinder,

released from a specific lateral location, as a function of dimensionless time. The lateral

positions are normalized by the channel width, w. Results are within 1% of those reported

in [31, 55].

3.3. Particle migration in pipe flow

The experiment conducted by Segre and Silberberg on the motion of a

sphere in pipe flow demonstrated a final particle stable radial position of
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r/R ≈ 0.6, where r and R denote the particle offset from the pipe axis

and the pipe radius, respectively [64, 65]. The same results are obtained

through simulation at Re ≈ 60, consistent with [64], and particle relative

size a/R = 0.1, where a denotes the sphere radius (Figure 5). The effects

of the Reynolds number and particle size are investigated independently and

reported in sub-sections 3.5 and 4.5, respectively.

Figure 5: Radial migration of rotating and non-rotating neutrally buoyant spheres in pipe

flow at Re ≈ 60 and a/R = 0.1. Each line shows the radial position of a sphere, released

at a specific radial position, as a function of dimensionless time. The radial positions are

normalized by the pipe radius, R.

3.4. Radial distribution of particles in suspension

This test validates the transient behavior of a suspension of several spheres

in pipe flow. The simulation parameters are those in Segre and Silberberg’s
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experiment [64, 65], which is provided in Table 3. Figure 6 shows a compar-

ison of the particle radial distribution at Re ≈ 60 with experimental results

reported in [64]. Here, L = (a/R)(avρ/µ)(l/R) is the non-dimensional dis-

tance from the pipe inlet and v = (a/R)2V is defined based on mean flow

velocity V , sphere radius a, and pipe radius R. The experimental setup

considered by Segre and Silberberg [64], i.e., including particle distribution

in the range of 1 through 4 particles/cm3 or volumetric concentration of

φ ∈ [0.027, 0.109] %, is very dilute. As such, generating smooth distribution

curves requires a very long channel to include a sufficiently large number of

rigid bodies. Reproducing this experiment through simulation requires the

flow field to be resolved at a scale fine enough to capture the dynamics of the

small rigid bodies suspended in the flow. This translates into a large number

of SPH markers. Consequently, the amount of time required to complete a

simulation, even when leveraging high performance parallel computing, was

prohibitively large. We addressed this issue by performing an ensemble av-

erage over a set of smaller channels instead of one single, long channel. Each

small channel was subjected to periodic boundary conditions along the chan-

nel axis and included between 1 and 16 rigid particles, initialized randomly

and tracked independently. In a Monte Carlo framework, a large number of

simulations were considered to produce a converged statistical distribution.

Yet, this was not an issue as we were able to carry out batches of up to 56

simultaneous simulations (one simulation per GPU card) on the computer

cluster available for this study [62]. The distributions reported in Figure 6

are the result of a statistical investigation based on 192 ten-hour-long simula-

tions that capture 14 seconds of real time. The simulation results accurately

20



Table 3: Parameters used in the simulation of transient behavior of a suspension of particles

sphere’s radius 0.4 mm

pipe’s radius 5.6 mm

density 1180 kg/m3

viscosity 0.05 N s/m2

Reynolds number 60

reproduce (1) the stable radial position, and (2) the longitudinal transition

distance observed in experimental tests [64].

To generate the distribution curves, the data was sampled at sections

located at predefined distances from the pipe entrance. A very fine radial

grid was considered to record the particles’ radial positions, which resulted

in a noisy output. Subsequently, statistical bootstrapping was used to find

the confidence zone and distribution curve [18]. The error bars reported with

the distribution curves are associated with the 95% confidence interval.

3.5. Effect of Reynolds number

Matas et al. [42] extended the Segre-Silberberg experiment up to Re ≈

2400 and demonstrated that the stable radial positions migrate towards the

wall as Re increases. However, a second stable region, i.e. an inner annulus,

forms at high Re, e.g. Re > 650, for λ = a/R ∈ [0.06, 0.11]. Moreover,

the radial distribution of the particles shifts toward the inner annulus as

Re increases. Shao et al. [66] numerically confirmed the formation of an

inner annulus at high Re via the direct-forcing fictitious domain method [74].

Figure 7 reports over a wide range of Reynolds numbers results obtained with

the proposed approach, experimental results presented in [42], and numerical

21



Figure 6: Particle radial distribution as a function of non-dimensional distance, L, from

the pipe inlet. Each plot shows the particle distribution as a function of radial distance

from channel axis. The simulation results are compared to the experiment [64] at: (a)

L = 0, (b) L = 0.08, (c) L = 0.16, (d) L = 0.32, (e) L = 0.69. Note that rigid bodies

cannot be initialized in the region close to the wall, i.e., 0.9 ≤ r/R ≤ 1, due to their finite

size.

results from [66, 72]. Our numerical results confirm the emergence at higher

Reynolds numbers, i.e., Re ≈ 772 when λ = 0.11 and Re ≈ 1127 when

λ = 0.15, of a secondary stable annulus in agreement with [42, 66]. We

noticed small differences at Re > 1200 from results reported in [66]. However,

as Matas et al. pointed out in their experimental work, particles tend to

appear between the two stable annuli effectively everywhere yet with a higher
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probability around the interior annulus.

Figure 7: Effect of Re on the tubular pinch effect for Re ∈ [1, 1400] and two particle

size ratios, λ = 0.11 and λ = 0.15. Each line shows the dependence of the normalized

stable radial position on the Reynolds number for a particular scenario. The results are

compared to data provided by Matas et al. [42], Yang et al. [72], and Shao et al. [66].

4. Results and discussion

Unlike the previous section, which focused on validating the proposed

approach and its software implementation, this section presents results of

several simulations carried out to characterize through direct numerical sim-

ulation the effect of particle properties on the radial distribution of suspen-

sions in pipe flow.
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4.1. Effect of particle rotation

To identify the root cause of particle migration and gauge the influence

of the Magnus effect, Oliver [53] carried out experiments with inertia asym-

metric spheres in which the center of mass was shifted from the sphere’s

geometric center. He showed that as the particle rotation was reduced, the

stable final position of these particles moved toward the pipe’s axis. Similar

investigations for the motion of a cylinder in Poiseuille flow were performed

numerically by Patankar et al. [58] and Joseph and Ocando [33] to demon-

strate the influence of the cylinder rotation on the steady state configuration

in 2D flows. Yu et al. [73] simulated the motion of a sphere in pipe flow

using the DLM/FDM method and showed a similar trend. Herein, we car-

ried out a similar experiment by suppressing the 3D rotation of spheres and

demonstrated results similar to those reported in [53, 73], see Fig. 5. Es-

sentially, the rigid body migration is noticeably altered when body rotation

is artificially removed. The conclusion is that the behavior of particles in

3D suspension flows may exhibit large deviations from the actual dynamics

when body rotation is ignored. Note that the rotation was eliminated by

numerically imposing extremely large moments of inertia for the immersed

spheres.

4.2. Effect of particle concentration

The experimental results in [64], used herein for validation purposes, only

included particle concentrations in the range 1 through 4 particles/cm3, i.e.

volumetric concentration of φ ∈ [0.027, 0.109] %. The dynamics of monodis-

perse particles has been numerically investigated herein for the set of param-

eters given in Table 3 and concentrations of up to φ = 3.488%. Figure 8 pro-
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vides snapshots of particle distribution and resulting annulus formation down

the pipe, for concentrations of 32 and 64 particles/cm3, i.e. φ = 0.872% and

φ = 1.744%, respectively. Normalized concentrations, defined as the ratio of

the particle local concentration to the initial concentration, are plotted for

different volumetric concentration, φ ∈ [0.109, 3.488] %, in Figure 9, which

suggests low probability of spheres hovering close to the pipe’s axis. The

particle distribution is, however, more spread in denser flows. This deviation

can be traced back to two trends: (1) the interaction between rigid bodies

through drafting, kissing, and tumbling prevents the particles from coalesc-

ing into a narrow annulus; (2) smaller particle distance at denser regimes

slows down the rate of migration toward the stable annulus. This will be

investigated further in Sect. 4.3.

Figure 8: Particle arrangement in the pipe at normalized distance L = 0.32. Two differ-

ent particle concentrations are shown herein: (a) 32 particles/cm3; (b) 64 particles/cm3.

Tubular pinch effect is observed regardless of the particle concentration. Nevertheless,

particles occupy a wider annulus in the denser regime.

4.3. Effect of inter-particle distance

The effect of a particle’s wake on the radial migration of trailing particles

is investigated using periodic boundary conditions along the channel axis for

spheres of radius a, with a/R = 0.25, at Re ≈ 60. The particle initial position
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Figure 9: Particle radial distribution at the normalized distance L = 0.69, plotted for

six different initial concentrations in the range of 4 through 128 particles/cm3 equivalent

to φ ∈ [0.109, 3.488] %, at Re ≈ 60. For each scenario, the particle radial distribution is

normalized by the initial uniform distribution used for that scenario. Results are compared

to a reference experimental distribution reported in [64] at L = 0.69 for concentration

of 1 particles/cm3. All scenarios demonstrate the tubular pinch effect, where particles

distribution tends to zero close to the channel axis. As expected, the distributions are

more spread in denser regimes.
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Table 4: Normalized stable radial position, r/R, at Re ≈ 60, a/R = 0.25, and different

normalized inter-particle distance, d/a.

d/a 2.50 2.93 3.64 4.28 5.71 7.14 10.00 12.86 14.29

r/R 0.62 0.60 0.58 0.56 0.54 0.52 0.51 0.52 0.52

is close to the pipe axis and inter-particle spacing is adjusted by changing the

value d, i.e. the length of one period of the pipe, see Figure 10. The results,

reported in Table 4 and Figure 10, suggest that (1) the stable radial position

moves closer to the wall as the inter-particle distance decreases, a fact that

complies well with [66]; and (2) for very large inter-particle distance, i.e.,

d/a � 1, radial migration is independent of inter-particle distance. Finally,

Figure 11 indicates that decreasing the inter-particle distance slows down

the radial migration, i.e., a particle’s wake alters the local flow profile around

trailing particles. In other words, while the particles settle further away from

the pipe axis, the settling occurs significantly further down the pipe. The

result of this test is particularly relevant in the simulation of pipe flow using

periodic boundary condition since it suggests a safe value of d/a > 9 to avoid

the effect caused by the imposition of boundary conditions.

4.4. Effect of particle asymmetry

In most of the experiments and numerical simulations of particle migra-

tion, the rigid bodies were spherical and the effect of asymmetry was not

discussed. A series of numerical simulations were carried out at Re ≈ 60 by

replacing spheres with ellipsoids of radii (a1, a2, a3), with a1 = a2 = 0.07R

and 0.07R < a3 < 0.43R. The obtained results suggest that, with an increase

in skewness, the stable radial particle position moves toward the pipe axis
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Figure 10: Investigation of the effect of inter-particle distance on the radial migration

of particles at Re ≈ 60 and size ratio a/R = 0.25. Top: Schematic of the simulation

setup. Periodic boundary is considered in the x-direction; Bottom: Stable radial position

of particles as a function of inter-particle distance. The plot shows a decay in the particle

migration as the particle distance increases. This result agrees with the findings of Shao

et al. [66]. Moreover, the particle migration is independent of inter-particle distance when

d/a > 9.

(Figure 12).

4.5. Effect of particle size

By changing the radius of the neutrally buoyant sphere in the range of

0.07R < a < 0.36R at Re ≈ 60, it is observed that particle radial migration

decreases almost linearly as the radius increases (Figure 13).
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Figure 11: Particle trajectories as a function of a non-dimensional travel distance along the

pipe axis x/R, plotted for several inter-particle distances in the range d/a ∈ [2.27, 14.3],

at Re ≈ 60 and a/R = 0.25. The curve labels indicate the value of d/a. To maintain

clarity, only some of the curve labels are shown. The results show a decay in the rate of

migration as the inter-particle spacing decreases.

4.6. Direct numerical simulation of a dense suspension: a scalability study

As shown in Figure 14a, the simulation times grow linearly with the size of

the problem, i.e., the combined number of SPH markers and rigid bodies. A

second scaling analysis showed that an increase in the number of rigid bodies

present in the system only marginally affects the total simulation time, see

Figure 14b. This is due to the fact that changing the rigid body count

has a relatively small impact on the total number of discretization markers

in the SPH method, which dictates to a very large extent the simulation

time. Nevertheless, as the particle concentration increases, smaller time steps

are required since the probability of short-range, high-frequency interaction

increases. Figure 15 shows a snapshot of a simulation of dense suspension
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Figure 12: Investigation of the effect of particle skewness on the stable radial position, at

Re ≈ 60. The skewed particles are spheroid of radii (0.07R, 0.07R, a3) where a3 > 0.07R.

For more skewed particles, i.e. larger values of a3/R, the stable radial position is located

closer to the channel axis.

flow, with the properties given in Table 5, taken at about t∗ = 4. The

non-dimensional time is defined as t∗ = t × V/w, where w is the channel

width.

4.7. Direction of future work: suspensions with moderately low concentration–

validation against experimental data

Preliminary 3D results obtained for the simulation of the Poiseuille flow

of a suspension with average volumetric fraction φ = 6.01%, at Re ≈ 66 con-

firms the blunting of the velocity profile reported in a 2D numerical study

[55] and in experimental works [23, 24, 35, 68], see Figure 16. The concen-

tration distribution curves are noisier than those obtained experimentally by

Han et. al [24]. Long simulation times (≈ 100 GPU hour per test) prevented
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Figure 13: Investigation of the effect of sphere size on the stable radial position, at Re ≈ 60.

Results show a linear dependence of the stable radial position on the particle size. The

stable radial position of larger particles is closer to the pipe axis.

Figure 14: Scaling analysis of the simulation engine: (a) simulation time as a function of

the total number of markers and rigid bodies; (b) simulation time as a function of number

of rigid bodies for a fixed number of SPH markers.
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Table 5: Characteristics of the dense suspension flow

ellipsoid’s radii, normalized by channel width (2.0, 1.5, 1.5)× 10−2

number of ellipsoids 2.3× 104

volumetric concentration 39.4%

Reynolds number 66

Figure 15: Direct numerical simulation of a dense suspension of ellipsoids in 3D square

channel flow with the properties given in Table 5. The mid-section of the flow, which

displays the rigid ellipsoids suspended in the fluid, is shown in the background. The color

represents fluid velocity: from zero (blue) to maximum (red). The rigid ellipsoids are

shown as gray objects. In the inset, the fluid was removed to show a perspective view of

the rectangular channel and the dense arrangement of ellipsoids.

us from running a sufficiently large number of simulations required for sta-

tistical averaging and bootstrapping. An effort is underway to reduce the

simulation times to enable the study of suspensions with moderate to high

concentrations.
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Figure 16: Comparison of the velocity profile of the flow of a suspension, with volumetric

fraction φ = 6.01%, with that of a single phase flow, i.e. φ = 0%. Results show the

blunting of the velocity for the case of a suspension.

5. Conclusions

This contribution introduces a Lagrangian-Lagrangian modeling and sim-

ulation framework that is used to characterize dilute and dense particles

suspensions. The methodology proposed relies on SPH and 3D rigid body

dynamics for the simulation of fluid and solid phases, respectively. A partial

lubrication force model for arbitrarily-shaped 3D bodies has been introduced

to resolve the solid-solid short range interaction.

Upon validation, the proposed modeling and simulation framework has

been used to investigate new phenomena associated with particle suspension

dynamics. The outcomes of these studies are summarized as follows:

Influence of particle concentration: investigations were performed on par-

ticle suspensions at volumetric concentrations φ < 3.5%. The simulation
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results demonstrate the significant effect of the particle concentration on ra-

dial migration even at dilute regimes due to the hydrodynamic and/or short

range interaction of particles. Nevertheless, the probability of finding a par-

ticle close to the pipe axis remained small in all of the considered scenarios.

Effect of particle distance: the effect of particles hydrodynamic interac-

tion on their radial migration was investigated through the simulation of a

line of non-coloidal particles in Poiseuille flow. We found that: (1) the stable

radial position moves closer to the wall as the inter-particle distance de-

creases; (2) for very large inter-particle distance, radial migration is indepen-

dent of inter-particle distance. More specifically, for the size ratio a/R = 0.25

and Re ≈ 60, the stable radial position remains at r/R = 0.52 for d/a > 9;

(3) decreasing the inter-particle distance slows down the radial migration.

Effect of inter-particle size, shape, and rotation. We found that increas-

ing the particle size linearly decreases the radial migration. Moreover, as

the particle skewness increases, i.e. by adopting ellipsoidal particles of vari-

able radii, the radial migration decreases. Finally, by reducing the particle

rotation through increasing the mass moment of inertia, the radial migra-

tion was found to be reduced, but not eliminated. This test demonstrated

the combined effect of particle rotation and flow velocity profile on radial

migration.

Through the use of parallel computing we have addressed both long sim-

ulation times and scaling in terms of number of particles in suspension. To

demonstrate this, we carried out a scaling analysis for dense suspensions of

up to 23, 000 ellipsoids at 39.4% volumetric fraction. These analyses were

performed on a personal computer and in reasonable amounts of time. The
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modeling and simulation times for fluid and rigid body dynamics, fluid-solid

interaction, and solid-solid short range interaction are independent of the

particle shape. As such, different particle shapes can be selected at no or

very little additional cost.

It is worth mentioning that a clogging analysis shares similar physics with

the dense suspension modeled in this work: (i) particles have geometry/shape

and finite size; (ii) they actively interact with the fluid, therefore influence

the fluid passage; and (iii) their interpenetration is removed by implementing

an impact model. A successful simulation of the dense suspension with 39.4%

particle volumetric fraction, which was carried on in this work, demonstrates

that the modeling, numerical, and computational infrastructure required for

the clogging formation is in place. Nevertheless, frequent occurrence of rigid

body impact may demand an smaller integration time step.

The simulation framework that implements the proposed Lagrangian-

Lagrangian approach is available as open source software and can be down-

loaded at [10].
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