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AbstractThis work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC)approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. Thesimulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH)method, which approaches the fluid flow in a Lagrangian framework consistent with theLagrangian tracking of the solid phase. A general 3D rigid body dynamics and an AbsoluteNodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multi-body dynamics. The two-way coupling of the fluid and solid phases is supported throughuse of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid couplingforces by enforcing a no-slip boundary condition. The solid-solid short range interaction,which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolvedvia a lubrication force model. The collective system states are integrated in time using anexplicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithmleverages parallel computing on Graphics Processing Unit (GPU) cards. Performance andscaling analysis are provided for simulations scenarios involving one or multiple phases withup to tens of thousands of solid objects. The software implementation of the approach, calledChrono::Fluid, is part of the Chrono project and available as an open-source software.
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1. Introduction
The last decade witnessed a paradigm shift in the microproces-sor industry towards chip designs that provide strong supportfor parallel computing. Teraflop computing, i.e. computing atthe rate of 1012 FLoating-point Operation Per Second, until re-
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cently the privilege of a select group of large research centers, isbecoming a commodity due to inexpensive GPU cards and multi-to many-core x86 processors. The steady improvements in pro-cessor speed and architecture, memory layout and capacity, andpower efficiency have motivated a trend of re-evaluating simu-lation algorithms with an eye towards identifying solutions thatmap well onto these new hardware platforms. In this context, ascrutinizing of the existing Fluid-Solid Interaction (FSI) solu-tions reveals that they are mostly inadequate since they eitherrely on algorithms that do not map well on emerging computerarchitectures, or they are unable to capture phenomena of in-terest which may require the simulation of tens of thousands of
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rigid and deformable bodies that interact directly or through thefluid media.FSI problems are usually simulated in either an Eulerian-Lagrangian framework, where the Lagrangian solid phase moveswith/over the Eulerian grid used for fluid discretization, or anEulerian-Eulerian framework, where the solid phase is consid-ered as an average of ensembles instead of a specific state.While the former approach delivers the flexibility required bygeneral multibody dynamics problems, it does not provide a levelof performance suitable for the simulation of dense fluid-solidproblems such as suspensions. This can be traced back to thecostly processes that overlaps the two different representationsof the fluid and solid phases.The Lagrangian representation of the fluid flow dovetails wellwith the Lagrangian approach used for the motion of the solidphase. This approach has recently been employed in the contextof multibody dynamics and particle suspension in [12, 25, 29–31, 33]. Specifically, the FSI methodology relying on SmoothedParticle Hydrodynamics (SPH) [16, 19, 22] and rigid bodyNewton-Euler equation of motion [10] was discussed in detailin [29, 30]. This or a similar framework was used for the in-vestigation and validation of rigid body suspensions [30], aswell as flexible beams interacting with fluid [12, 31, 33]. Addi-tionally, support for the short-range solid-solid interaction wasintroduced in [30, 31], which was leveraged in the simulation ofdense suspensions.This contribution concentrates on the high performance com-puting approach required for the efficient simulation of FSIproblems. Although the approach and algorithms explainedherein can leverage any multi-threaded architecture, the CUDAlibrary [26] was employed for the execution of all solutioncomponents on the GPU, with negligible data transfer betweenthe host (CPU) and the device (GPU). The paper is organizedas follows. The numerical methods adopted for the simulationof fluid and solid phases, fluid-solid coupling, and solid-solidshort range interaction are explained in Sect. 2. The com-putational scheme, including the time integration algorithm,HPC-based implementation, and parallel neighbor searchrequired for SPH are described in Sect. 3. Section 4 contains aperformance analysis of the algorithm using Kepler-type GPUcards.

2. Numerical approach
The proposed FSI simulation framework combines SPH for thesimulation of the fluid flow, the Newton-Euler formalism for rigidbody dynamics, and ANCF for modeling flexible body dynam-ics. These algorithmic components are described in more detail

in the following subsections, including a discussion on the ap-proach adopted for resolving fluid-solid and solid-solid interac-tions.
2.1. Smoothed Particle Hydrodynamics
The term smoothed in SPH refers to the approximation of pointproperties via a smoothing kernel function W , defined over asupport domain S. This approximation reproduces functions withup to 2nd order of accuracy, provided the kernel function: (1)approaches the Dirac delta function as the size of the supportdomain tends to zero, that is lim

h→0W (r, h) = δ(r), where r is thespatial distance and h is a characteristic length that defines thekernel smoothness; (2) is symmetric, i.e., W (r, h) = W (−r, h);and (3) is normal, i.e., ∫SW (r, h)dV = 1, where dV denotethe differential volume. A typical spatial function f (x) is thenapproximated by 〈f (x)〉 as
f (x) = ∫

S

f (x′)δ(x− x′)dV
= ∫

S

f (x′)W (x− x′, h)dV +O(h2)
= 〈f (x)〉+O(h2) .

(1)

To simplify notation, in the remainder of this document we use
f (x) to represent 〈f (x)〉. Using Eq. (1) and the divergence theo-rem, the spatial derivatives of a function can be mapped to thederivatives of the kernel function. For instance, the gradient ofa function can be written as

∇f (x) = ∫
∂S

f (x′)W (x− x′, h)·ndA
−
∫
S

f (x′)∇W (x− x′, h)dV ,
(2)

where ∂S is the boundary of the integration volume V and dAis the differential area. By imposing an additional property forthe kernel function, namely that (4) it approaches zero as r in-creases, i.e., lim
r→∞

W (r, h) = 0, the first term on the right handside of Eq. (2) vanishes. Note that some additional considera-tions, which will be addressed later, are required for the SPHapproximation near boundaries.The term particle in SPH terminology indicates the discretiza-tion of the domain by a set of Lagrangian particles. To removethe ambiguity caused by the use of the term rigid particles inthe context of FSI problems, we use the term marker to referto the SPH discretization unit. Each marker has mass m as-sociated to the representative volume dV and carries all of the
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essential field properties. As a result, any field property at acertain location is shared and represented by the markers inthe vicinity of that location. The value of a certain unknownat a given location is calculated according to the distance be-tween that location and the collection of markers in its vicinityusing the field values at these markers and the expression ofthe kernel function W . This leads for the second approximationembedded in SPH, which can be expressed as
f (x) = ∫

S

f (x′)
ρ(x′)W (x− x′, h)ρ(x′)dV

'
∑
b

mb

ρb
f (xb)W (x− xb, h) , (3)

where b is the marker index and ρb is the fluid density, smoothedat the marker location xb. The summation in Eq. (3) is over allmarkers whose support domain overlaps the location x. Severalother properties of the kernel functions are provided in [16]. Forinstance, the kernel function should be a positive and monoton-ically decreasing function of r, which implies that the influenceof distant markers on field properties at a given location is lessthan that of nearby markers. Moreover, for acceptable com-putational performance and to avoid a quadratic computationalcomplexity, kernel functions have a compact domain of influencewith a radius Rs defined as some finite multiple κ of the char-acteristic length h, as shown in Figure 1. The methodologyadopted herein relies on a cubic spline,
W (q, h) = 14πh3 ×


(2− q)3 − 4(1− q)3, 0 ≤ q < 1(2− q)3, 1 ≤ q < 20, q ≥ 2 , (4)

where q ≡ |r| /h, has a support domain with radius 2h.

Figure 1. Illustration of the kernel W and its support domain S. SPH markersare shown as black dots. For 2D problems the support domain is acircle, while for 3D problems it is a sphere.

2.1.1. SPH for fluid dynamicsFor fluid dynamics, the continuity and momentum equations aregiven in Lagrangian form as
dρ
dt = −ρ∇·v (5)

and
dv
dt = − 1

ρ∇p+ µ
ρ∇

2v + f , (6)
where µ is the fluid viscosity, while v and p are the flow ve-locity and pressure, respectively. Within the SPH frameworkdescribed earlier, Eqs. (5) and (6) are discretized at an arbi-trary location x = xa within the fluid domain as [24]

ρ̇a = dρa
dt = ρa

∑
b

mb

ρb
(va − vb) ·∇aWab , (7)

and
v̇a = dva

dt = −∑
b

mb

[(
pa
ρa2 + pb

ρb2
)
∇aWab + Πab

]+fa . (8)
In the above equations, quantities with subscripts a and b areassociated with markers a and b (see Figure 1), respectively. Itis important to note that these quantities are different from thecorresponding physical quantities at locations xa and xb. Theviscosity term Πab is defined as

Πab = − (µa + µb)xab·∇aWab

ρ̄2
ab(x2

ab + εh̄2
ab) vab , (9)

where xab = xa − xb, Wab = W (xab, h), ∇a is the gradient withrespect to xa, i.e., ∂/∂xa, and ε is a regularization coefficient.Quantities with an over-bar are averages of the correspondingquantities for markers a and b.Alternative viscosity discretizations include:
1. the model suggested in [5]:Π∗ab = −µaµbxab·vab/[ρaρb(µa + µb)(x2

ab + εh̄2
ab)]∇aWab ;

2. direct discretization of ∇2 operator [22, 24]; and
3. the class of artificial viscosity models introduced in [17,19, 23]

However, using Eq. 9 is preferred since it has the following prop-erties: (1) it ensures that the viscous force is along the sheardirection vab, instead of the particles center line xab; (2) it isless sensitive to local velocities; (3) it allows for better compu-tational efficiency by removing the nested loop required for the
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computation of the ∇2 operator; and (4) it is stated in terms ofphysical properties, rather than model parameters like those inartificial viscosity, which are introduced primarily for numericalstabilization through damping. In the simulation of transientPoiseuille flow, although we managed to virtually obtain exactresults using Eq. 9 [30], the error caused by implementing eitherΠ∗ab or artificial viscosity were non-negligible.In the weakly compressible SPH model, the pressure p is eval-uated using an equation of state [22]
p = cs2ρ0

γ

{(
ρ
ρ0
)γ
− 1} , (10)

where ρ0 is the reference density of the fluid, γ tunes the stiff-ness of the pressure-density relationship, and cs is the speedof sound. The value cs is adjusted depending on the maximumspeed of the flow, Vmax, to keep the flow compressibility belowsome arbitrary value. We use γ = 7 and cs = 10Vmax, whichallows 1% flow compressibility [22].The fluid flow equations (7) and (8) are solved together with
ẋa = dxa

dt = va (11)
to update the position of the SPH markers.The original SPH summation formula calculates the density ac-cording to

ρa =∑
b

mbWab. (12)
Equation (7), which evaluates the time derivative of the density,was preferred to the above since it produces a smooth densityfield, works well for markers close to the boundaries (the freesurface, solid, and wall), and does not exhibit the large varia-tions in the density field introduced when using Eq. (12) closeto the boundaries. However, Eq. (7) does not guarantee consis-tency between a marker’s density and the associated mass andvolume [3, 21, 24]. The so-called density re-initialization tech-
nique [6] attempts to address this issue by using Eq. (7) at eachtime step and periodically; i.e., every n time steps, use Eq. (12)to correct the mass-density inconsistency. The results reportedherein were obtained with n = 10. The Moving Least Squaresmethod or a normalized version of Eq. (12) could alternativelybe used to address the aforementioned issues, see [6, 7].Finally, the methodology proposed employs the extended SPHapproach (XSPH), which prevents extensive overlap of markers’support domain and enhances flow incompressibility [20]. Thiscorrection takes into account the velocity of neighboring mark-ers through a mean velocity evaluated within the support of anominal marker a as

v̂a = va + ∆va, (13)

where ∆va = ζ
∑
b

mb

ρ̄ab
(vb − va)Wab, (14)

and 0 ≤ ζ ≤ 1 adjusts the contribution of the neighbors’ veloci-ties. All the results reported herein were obtained with ζ = 0.5.The modified velocity calculated from Eq. (13) replaces the orig-inal velocity in the density and position update equations, butnot in the momentum equation [6].
2.2. Rigid body dynamics
Once the fluid-solid interactions between individual markers;i.e., the right hand side of Eqs. (7) and (8), are accounted for,the total rigid body force and torque due to the interaction withthe fluid can be obtained by respectively summing the individ-ual forces and their induced torques over the entire rigid body.They are then added to any other forces, including external andcontact forces. The dynamics of the rigid bodies is fully char-acterized by the Newton-Euler equations of motion (EOM), seefor instance [10]:

dVi

dt = Fi

Mi
, (15)

dXi

dt = Vi , (16)
dω′i
dt = J′i

−1 (T′i − ω̃′iJ′iω′i
)
, (17)

dqi
dt = 12GT

i ω′i , (18)
and

qTi qi − 1 = 0, (19)
where Fi, T′i, Xi, Vi, ω′i ∈ R3 denote the force, torque, po-sition, velocity, and angular velocity associated to body i,
i = 1, 2, . . . , nb, respectively. The quantity qi denotes therotation quaternion, while Mi and J′i are the mass and mo-ment of inertia, respectively. Quantities with a prime symbolare represented in the rigid body local reference frame. Given
a = [

ax , ay, az
]T ∈ R3 and q = [

qx , qy, qz , qw
]T ∈ R4, theauxiliary matrices ã and G are defined as [10]

ã =
 0 −az ay
az 0 −ax
−ay ax 0

 and G =
−qy qx qw −qz
−qz −qw qx qy
−qw qz −qy qx

 .
(20)
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2.3. Flexible body dynamics
The ANCF formulation [36], which allows for large deforma-tions and large rigid body rotations, is adopted herein for thesimulation of flexible bodies suspended in the fluid. While ex-tension to other elastic elements is straightforward, the currentChrono::Fluid implementation only supports gradient deficientANCF beam elements, which are used to model slender flexiblebodies composed of ne adjacent ANCF beam elements. The flex-ible bodies are modeled using a number nn = ne+1 of equally-spaced node beam elements, each represented by 6 coordinates,
ej = [rTj , rTj,x ]T , j = 0, 1, . . . , ne; i.e., the three components ofthe global position vector of the node, and the three componentsof its slope. This is therefore equivalent to a model using neANCF beam elements with 6 × nn continuity constraints, butis more efficient in that it uses a minimal set of coordinates.We note that formulations using gradient deficient ANCF beamelements display no shear locking problems [9, 34, 35] and, dueto the reduced number of nodal coordinates, are more efficientthan fully parametrized ANCF elements. However, gradient de-ficient ANCF beam elements cannot describe a rotation aboutits axis and therefore cannot model torsional effects.Consider first a single ANCF beam element of length ` . Theglobal position vector of an arbitrary point on the beam centerline, specified through its element spatial coordinate 0 ≤ x ≤ ` ,is then obtained as

r(x, e) = S(x)e , (21)
where e = [eTl , eTr ]T ∈ R12 is the vector of element nodalcoordinates. With I being the 3 × 3 identity matrix, the shapefunction matrix S = [S1I S2I S3I S4I] ∈ R3×12 is definedusing the shape functions [36]

S1 = 1− 3ξ2 + 2ξ3
S2 = `

(
ξ − 2ξ2 + ξ3)

S3 = 3ξ2 − 2ξ3
S4 = `

(
−ξ2 + ξ3) , (22)

where ξ = x/` ∈ [0, 1]. The element EOM are then written as
Më + Qe = Qa , (23)

where Qe and Qa are the generalized element elastic and ap-plied forces, respectively, and M ∈ R12×12 is the symmetricconsistent element mass matrix defined as
M = ∫

`
ρsASTSdx . (24)

The generalized element elastic forces are obtained from thestrain energy expression [36] as
Qe = ∫

`
EAε11

(
∂ε11
∂e

)T
dx + ∫

`
EIκ

(
∂κ
∂e

)T
dx , (25)

where ε11 = (rTx rx − 1) /2 is the axial strain and κ = rx × rxx /rx3is the magnitude of the curvature vector. The required deriva-tives of the position vector r can be easily obtained fromEq. (21) in terms of the derivatives of the shape functions as
rx (x, e) = Sx (x)e and rxx (x, e) = Sxx (x)e.External applied forces, in particular the forces due to the inter-action with the fluid, see Sect. 2.4, are included as concentratedforces at a BCE marker. The corresponding generalized forcesare obtained from the expression of the virtual work as

Qa = ST (xa)F , (26)
where F is the external point force and the shape function matrixis evaluated at the projection onto the element’s center line ofthe force application point. The generalized gravitational forcecan be computed as

Qg = ∫
`
ρsASTgdx . (27)

In the above expressions, ρs represents the element mass den-sity, A is the cross section area, E is the modulus of elasticity,and I is the second moment of area.The EOM for a slender flexible body composed of ne ANCFbeam elements are obtained by assembling the elemental EOMsof Eq. (23) and taking into consideration that adjacent beam el-ements share 6 nodal coordinates. Let ê = [eT0 , eT1 , . . . eTne ]Tbe the set of independent nodal coordinates; then the nodal co-ordinates for the j-th element can be written using the mapping[
el
er

]
j

= Bj ê , with Bj = [0 0 . . . I3 0 . . .0
0 0 . . .0 I3 . . .0

] (28)
and the assembled EOMs are obtained, from the principle ofvirtual work, as follows. Denoting by Mj be the element massmatrix of Eq. (24) for the j-th ANCF beam element, it can bewritten in block form as

Mj = [Mj,ll Mj,lr

Mj,rl Mj,rr

]
, (29)

where Mj,lr = MT
j,rl and all sub-blocks have dimension 6 × 6.Here, l denotes the left end of the beam element, i.e., the node
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characterized by the nodal coordinates ej−1, while r correspondsto the node with coordinates ej . With a similar decompositionof a generalized element force into
Qj = [Qj,l

Qj,r

] (30)
one obtains

M̂¨̂e = Q̂a − Q̂e (31)
where

M̂ =


M1,ll M1,lr
M1,rl M1,rr + M2,ll

M2,rl . . .
Mne,rr

 (32)

Q̂a − Q̂e =


∑
Qa1,l∑

Qa1,r +∑Qa2,l∑
Qa2,r +∑Qa3,l...∑

Qa
ne,r

−


Qe1,l
Qe1,r + Qe2,l
Qe2,r + Qe3,l...

Qe
ne,r

 . (33)

Inclusion of additional kinematic constraints, e.g., anchoring thebeam at one end to obtain a flexible cantilever or fixing itsposition to obtain a flexible pendulum, can be done either byformulating the EOM as differential-algebraic equations or byderiving an underlying ODE after explicitly eliminating the cor-responding constrained nodal coordinates. The latter approachwas used in all simulations involving flexible cantilevers dis-cussed in Sect. 4.
2.4. Fluid-solid interaction
The two-way fluid-solid coupling was implemented based on amethodology described in [29]. The state update of any SPHmarker relies on the properties of its neighbors and resolvesshear as well as normal inter-marker forces. For the SPH mark-ers close to solid surfaces, the SPH summations presented inEqs. (7), (8), (12), and (14) capture the contribution of fluid mark-ers. The contribution of solid objects is calculated via BoundaryCondition Enforcing (BCE) markers placed on and close to thesolid surface as shown in Figure 2. The velocity of a BCE markeris obtained from the rigid/deformable body motion of the solidthus ensuring the no-slip condition on the solid surface. Includ-ing BCE markers in the SPH summation equations (7) and (8)results in fluid-solid interaction forces that are added to bothfluid and solid markers.

Figure 2. Fluid-solid interaction using BCE markers attached to a rigid body.BCE and fluid markers are represented by black and white circles,respectively. The BCE markers positioned in the interior of the body(markers g and f in the figure) should be placed to a depth lessthan or equal to the size of the compact support associated with thekernel function W . A similar concept yet with different kinematics isused for flexible bodies.
2.5. Solid-solid short range interaction
Dry friction models typically used to characterize the dynamicsof granular materials [1, 13, 14] do not capture accurately theimpact of solid surfaces in hydrodynamics media. In practice,it is infeasible to resolve the short-range, high-intensity impactforces arising in wet media due to computational limits on spaceand time resolution. Ladd [15] proposed a normal lubricationforce between two spheres that increases rapidly as the distancebetween particles approaches zero and therefore prevents theactual touching of the spheres:

Flub
ij = min{−6πµ( aiaj

ai + aj

)2 (1
s −

1∆c

)
, 0} · vnij , (34)

where, ai and aj are the sphere radii, vnij is the normal com-ponent of the relative velocity, and s is the distance betweensurfaces. For s > ∆c , Flub
ij = 0, and the spheres are subjectonly to hydrodynamic forces.Equation (34) provides a basic model for the estimation of thelubrication force in normal direction. The generalization of thismodel to non-spherical objects requires the calculation of theminimum distance and the curvature of the two contact surfaces.The calculation of the partial lubrication force between non-spherical surfaces follows the approach proposed in [8] for alattice Boltzmann method but is amended to fit the Lagrangianformulation adopted herein. Accordingly, the force model pro-vided in Eq. (34) is modified as

Flub
ij =∑

k

fkij ,

with fkij = min{−32πµh2 ( 1
s∗ −

1∆c

)
, 0} · v∗nij , (35)
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where s∗ and v∗nij denote the markers’ relative distance and ve-locity, respectively, and the summation is over all interactingmarkers of the two solid objects.
3. HPC implementation
Chrono::Fluid [4], an open-source simulation framework for fluid-solid interaction, provides an implementation that executes allphases of the solution method on the GPU. A brief overviewof the GPU hardware and programming model adopted is fol-lowed below by a detailed discussion of the critical kernels thatimplement the proposed modeling and solution approach.
3.1. GPU hardware and programming model
To a very large extent, the performance of today’s simulationengines is dictated by the memory bandwidth of the hardwaresolution adopted. Recent numerical experiments conducted bythe authors revealed that only about 5 to 10% of the peak floprate is reached by the large number of cores present on today’sarchitectures since these cores most of the time idle waiting fordata from global memory or RAM. It is this observation thatmotivated the selection of the GPU as the target hardware forimplementing Chrono::Fluid. At roughly 300 GB/s, the GPUmemory bandwidth stands four to five times higher than whatone could expect on a fast CPU.To describe the hardware organization of the GPU, we con-sider here the NVIDIA GeForce GTX 680 [18, 27]. This GPU isbased on the first generation of Kepler architecture, code nameGK104, which is also implemented in Tesla K10. The Keplerarchitecture relies on a Graphics Processing Cluster (GPC) asthe defining high-level hardware block. There are a total of 4GPCs on the GK104. Each GPC includes two Stream Multi-processors (SM), each of which has 192 Scalar Processors (SP),for a total of 1536 SPs, and 3.1 TFlops processing rate.In addition to the processing cores, the second important aspectof GPU hardware is that of the memory hierarchy. The memoryon the GPU is divided into several types, each with differentaccess patterns, latencies, and bandwidths:
Registers (read/write per thread): 65536, 32-bit memory units.Very low latency, high bandwidth (' 10 TB/s cumulative)memory used to hold thread-local data.
Shared memory/L1 cache (read/write per block): 64 KB. Lowlatency, high bandwidth (' 1.5-2 TB/s cumulative) mem-ory divided between shared memory and L1 cache.
Global memory (read/write per grid): 2 GB. Used to hold in-put and output data. Accessible by all threads, with abandwidth of 192 GB/s and a higher latency (' 400-800

cycles) than shared memory and registers. All accessesto global memory pass through the L2 cache. The lat-ter is 512 KB large and has a bandwidth of 512 B/clockcycle.
Constant memory (read only per grid): 48 KB per Kepler SM.Used to hold constants, serviced at the latency and band-width of the L1 cache upon a cache hit, or those of theglobal memory upon a cache miss.
The parallel execution paradigm best supported on GPUs is“single instruction multiple data” (SIMD). In this model, if forinstance two arrays of length one million are to be added, onemillion threads are launched with each executing the same in-struction; i.e., adding two numbers, but on different data - eachthread adding two different numbers. Fortunately, SIMD com-puting is very prevalent in the solution methodology proposed,where each SPH marker is handled by a thread in the sameway in which hundreds of thousands of other threads handletheir markers using different data. While strongly leveragingthe SIMD model owing to the fine grain parallelism that it ex-poses, the methodology adopted is prone to lead to memory ac-cess patterns that do not display high spatial and/or temporallocality. This is because the SPH markers move in time leadingto less structured memory accesses that adversely impact theeffective bandwidth reached by the code.
3.2. Time integration
Chrono::Fluid uses a second order explicit mid-point Runge-Kutta (RK2) scheme [2] for the time integration of the fluid andsolid phases, the latter in its rigid or flexible representation.Algorithm 1 summarizes the steps required for the calculationof the force on the SPH markers, rigid bodies, and deformablebeams at time step k . The variables Nm, Nr , and Nf denotethe number of markers, rigid bodies, and flexible beams, respec-tively. The arrays ρ, x, v, and v̂ store the density, position,velocity, and modified velocity for all markers, respectively; forexample, ρ = {ρa|a = 0, 1, 2, ..., Nm − 1}.The external forces on the rigid and flexible bodies include theFSI forces captured via BCE markers at distributed locations onthe solid surfaces. The distributed forces need to be accumu-lated into a single force and torque at the center of each rigidbody, or point forces at node locations of each flexible body.The reduction (summation of the forces and torques) is han-dled by parallel scan operations available through the Thrustlibrary [11], which exposes a scan algorithm that scales linearly.The RK2 integration scheme requires the calculation of the forceat the beginning as well as middle of the time step. Algorithm 2lists the steps required for the time integration of a typical FSIproblem.
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Algorithm 1 Force Calculation
. Calculate modified XSPH velocities1: for a := 0 to (Nm − 1) do2: v̂ka ≡ v̂a

(
ρk , xk , vk

)
3: end for
. SPH forces4: for a := 0 to (Nm − 1) do5: ρ̇ka ≡ ρ̇a

(
ρk , xk , v̂k

)
6: ẋka = v̂ka7: v̇ka ≡ v̇a

(
ρk , xk , vk

)
8: end for
. Rigid body forces9: for i := 0 to (Nr − 1) do10: V̇k

i ≡ V̇i
(
v̇k
)

11: Ẋk
i = V̇k

i12: ω̇ki ≡ ω̇i
(
v̇k ,ωki

)
13: q̇ki ≡ q̇i

(
ωki , qki

)
14: end for

. ANCF forces15: for j := 0 to (Nf − 1) do16: Q̂k
j = Q̂a

j
(
v̇k
)
− Q̂e

j
(
êk
)+ Q̂g

j
(
êk
)

17: ˙̂ek1 = êk218: ˙̂ek2 = M̂−1Q̂k
j19: end for

To improve the code vectorization and use of fast memory; i.e.,L1/L2 cache, shared memory, and registers, each computationtask was implemented as a sequence of light GPU kernels. Forinstance, different computation kernels are implemented to up-date the attributes of the solid bodies, including force, moment,rotation, translation, linear and angular velocity, and locationsof the associated BCE markers. A similar coding philosophywas maintained for the density re-initialization, boundary con-dition implementation, and mapping of the marker data on anEulerian grid for post processing.
3.2.1. Multi-rate integrationStable integration of the SPH fluid equations requires step-sizes which are also appropriate for propagating the dynamicsof any rigid solids in the FSI system. However, integration ofthe dynamics of deformable bodies, especially as their stiffnessincreases, calls for very small time steps. To alleviate the associ-ated computational cost, we use a dual-rate integration schemeusing intermediate steps for the integration of the flexible dy-namics EOMs, typically with ∆tSPH /∆tANCF = 10, althoughstiffer problems may require ratios of up to 50. This aspect isnoteworthy given that typical FSI models involve a number ofSPH markers orders of magnitude larger than the number ofANCF nodal coordinates required for the flexible bodies. With-out a multi-rate implementation, the numerical solution wouldvisit the fluid phase at each integration step, an approach thatled to very large solution times. This aspect is further discussedin Sect. 4.

Algorithm 2 RK2 Time Integration
. Force calculation at beginning of step (Algorithm 1)1: Calculate {v̂k , ρ̇k , ẋk , v̇k , V̇k , Ẋk , ω̇k , q̇k , Q̂k}
. Half-step updates for fluid, rigid body, and flexible body states2: for a ∈ {a|a is a fluid marker} do3: ψk+1/2

a = ψka + ψ̇ka × ∆t/2, where ψa ∈ {ρa, xa, va}4: end for5: for i := 0 to (Nr − 1) do6: Ψk+1/2
i = Ψk

i + Ψ̇k
i × ∆t/2, where Ψi ∈ {Vi,Xi,ωi, qi}7: end for8: for j := 0 to (Nf − 1) do9: êk+1/21 = êk1 + ˙̂ek1 × ∆t/210: êk+1/22 = êk2 + ˙̂ek2 × ∆t/211: end for

. Half-step update for BCE marker positions and velocities12: for a ∈ {a|a is a BCE marker} do13: Obtain xk+1/2
a and vk+1/2

a according to associated rigid, flexible,or immersed boundary motion.14: end for
. Force calculation at half-step (Algorithm 1)15: Calculate {v̂k+1/2, ρ̇k+1/2, ẋk+1/2, v̇k+1/2, V̇k+1/2, Ẋk+1/2, ω̇k+1/2,
q̇k+1/2, Q̂k+1/2}
. Full-step updates for fluid, rigid body, and flexible body states16: for a ∈ {a|a is a fluid marker} do17: ψk+1

a = ψka + ψ̇k+1/2
a × ∆t18: end for19: for i := 0 to (Nr − 1) do20: Ψk+1

i = Ψk
i + Ψ̇k+1/2

i × ∆t21: end for22: for j := 0 to (Nf − 1) do23: êk+11 = êk1 + ˙̂ek+1/21 × ∆t24: êk+12 = êk2 + ˙̂ek+1/22 × ∆t25: end for
. Full-step update for BCE marker positions and velocities26: for a ∈ {a|a is a BCE marker} do27: Obtain xk+1

a and vk+1
a .28: end for

3.3. Proximity calculation and neighbor search
In the current implementation, each marker has a list of neigh-bor markers; i.e., markers that fall within its support domain.Given this set of lists, the calculation of v̂ka ≡ v̂a

(
ρk , xk , vk

),
ρ̇ka ≡ ρ̇a

(
ρk , rk , v̂k

), and v̇ka ≡ v̇a
(
ρk , rk , vk

) is straightforward.The loop iterations in Algorithms 1 and 2 have no overlap andcan be executed in parallel. The computational bottleneck thusbecomes the determination of the neighbor lists through prox-imity calculation, a step that requires about 70% of the entirecomputational budget and thus critically impacts the overall per-formance of the simulation. Herein, we adopt a spatial binningalgorithm which is sub-optimal in terms of amount of net workbut superior in terms of memory usage. In this approach, thecomputation domain is divided into a collection of bins. Thebins have side lengths equal to the maximum influence distanceof a marker, i.e. κh. This localizes the search for the possibleinteracting markers to the bin and all of its 26 immediate 3D
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Figure 3. Illustration of the spatial subdivision method used for proximity com-putation in 2D. The circles represent the domain of influence of eachmarker; i.e., the support domain. For clarity, a coarse distribution ofmarkers is shown. In reality, the concentration of markers per bin ismuch larger.

neighbors. Figure 3 shows the binning approach in 2D.In the neighbor search approach adopted herein, neighbor listsare not saved in memory; instead, neighbors are evaluatedwhenever required. Alternatively [28], the principle of actionand reaction could be leveraged to calculate and store the ac-celeration terms for each inter-penetration. Although the secondalgorithm reduces the amount of work by re-using the accel-eration terms calculated for each inter-penetration, it can notbe applied to the SPH method due to the massive amount ofmemory required to store the data associated with all inter-penetration events. Another advantage of the adopted neighborsearch approach is the coalesced memory access achieved bysorting and accessing the data based on the markers location.The steps required for accessing the neighbors are summarizedin Algorithm 3.
Algorithm 3 Inner loop: accessing neighbor markers1: Divide the solution space into nb bins of (∆x ,∆y,∆z) dimensions,where nb = nx × ny × nz , and (nx , ny, nz ) is the number of gridcells along (x, y, z) axis.2: Construct the hash array: s = {sa|a = 0, 1, 2, ..., Nm−1} accordingto sa = i × ny × nz + j × nz + k , where (i, j, k) is the location ofthe bin containing the marker a.3: Sort s into ssorted and obtain corresponding ρsorted , xsorted , vsorted ,and v̂sorted .4: Construct c1 = {c1

p|p = 0, 1, 2, ..., nb − 1} and c2 = {c2
p|p =0, 1, 2, ..., nb−1}, where c1

p and c2
p denote the two indices in ssortedthat bound the sequence of hash values sa = p.5: Access markers data in bin (i, j, k) by loading [c1

p, c2
p

] portions ofthe sorted arrays ρsorted , xsorted , vsorted , and v̂sorted , as needed.
The data sorting in step 3 of Algorithm 3 is performed using thelinear-complexity radix sort available in the Thrust library. As a

Figure 4. Example of Chrono::Fluid simulation: channel flow over an array offlexible cantilevers. (See [32] for further details)

result, this solution component does not affect the overall linearscaling of Algorithms 1 and 2. Working with the sorted arraysfor the bulk of the computation has the additional advantage ofincreasing the memory spatial locality: SPH markers that sharea neighborhood in the physical space, do so in their memorylocation as well.
4. Results
The simulation approach described in Sect. 3 was implementedto execute in parallel on GPU cards using the CUDA program-ming environment [26]. All simulations reported in this sectionwere run on an NVIDIA GeForce GTX 680 GPU card describedin sub-section 3.1. In all simulations, if present, the flexiblebeams were modeled using ne = 4 ANCF beam elements, whilethe integrals appearing in the elastic forces Qe in Eq. (25) wereevaluated using 5 and 3 Gauss quadrature points for the axialand bending elastic forces, respectively.A snapshot from a typical FSI problem involving flexible bodiesis shown in Figure 4. Additional Chrono::Fluid simulation ex-amples can be found at [32]. Comprehensive validation studiesof the Chrono::Fluid simulation package are provided in [31].The focus here is on numerical experiments that illustrate theperformance and scalability of the proposed algorithm and itsparallel implementation.We begin by analyzing the efficiency and scaling attributes ofthe solution for systems composed exclusively of rigid bodies,flexible bodies, or a fluid phase. In each of these three scenar-

9



Preprint submitted to Archive of Mechanical Engineering

Table 1. Time required for advancing the rigid body dynamics simulation byone time step as function of problem size (number of rigid bodies, Nr )
Nm = 0, Nf = 0

Nr (×103) 0.49 2.87 16.59 56.77 118.23
t (ms) 5 8 16 44 78

Table 2. Time required for advancing the flexible body dynamics simulation byone time step as function of problem size (number of flxible bodies,
Nf )

Nm = 0, Nr = 0
Nf (×103) 0.78 3.51 17.55 56.94 115.05
t (ms) 8 14 48 122 238

ios, we provide the simulation times per time step for problemsof increasing size. Data provided in Tables 1, 2, and 3 and illus-trated in Figure 5 indicate that updates of the dynamics of eachphase scale linearly with problem size; i.e., with the number ofrigid bodies, flexible bodies, and SPH markers, respectively.While the previous results show linear scaling for rigid andflexible body dynamics, in actual FSI problems in which rigidand/or flexible bodies interact with the fluid, the simulation timeis virtually independent of the number of solid objects. The re-sults presented in Tables 4 and 5 were obtained on a systemconsisting of approximately 3 million SPH markers by vary-ing the number of rigid bodies and flexible bodies. The smallsensitivity of the simulation time with respect to the number ofsolid objects is due to the fact that the number of BCE mark-ers associated with solid bodies represents only a very smallfraction of the number of SPH discretization markers, the latteroverwhelmingly dictating the required computation time. Never-theless, as the concentration of solid objects increases, smallertime steps are required since the probability of short-range,high-frequency interactions increases.The two sets of results provided in Table 5 for different valuesof τ = ∆tSPH /∆tANCF show a small increase in the simulationtime when choosing a very small integration step size for flexiblebody dynamics. This illustrates the efficiency of the multi-rateintegration scheme in improving the time integration stability

Table 3. Time required for advancing a fluid dynamics simulation by one timestep as function of problem size (number of SPH markers, Nm)
Nr = 0, Nf = 0

Nm (×106) 0.06 0.32 0.93 1.79 4.13
t (ms) 27 121 331 538 1150
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Figure 5. Scaling analysis of Chrono::Fluid for rigid body dynamics, flexiblebody dynamics, and fluid dynamics as function of problem size (Nr ,
Nf , and Nm , respectively). The coefficients R2 are specified to eachlinear regression.

Table 4. Simulation time per time step for an FSI problem with fixed numberof SPH markers and increasing number of rigid bodies
Nm ' 3.0× 106, Nf = 0

Nr 0 36 120 480 1800 8400 33 600
t (ms) 906 919 923 925 926 926 921

at a small increase in computational cost. The small changesin the simulation times provided in Tables 4 and 5 are mainlydue to the deviations in the magnitude of Nm as the number ofsolid objects changes. Linear scaling in Chrono::Fluid is alsodemonstrated in an experiment where a combined FSI problem,i.e. involving rigid and flexible bodies and including a lubri-cation force model and two-way coupling with fluid, is solvedon domains of increasing size (see Figure 6). As the simula-tion domain volume is increased by factors from 2 up to 32, the
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Table 5. Simulation time per time step for an FSI problem with fixed numberof SPH markers and increasing number of flexible bodies, for twodifferent values of the multi-rate integration factor τ = ∆tSPH /∆tANCF
Nm ' 3.0× 106, Nr = 0

Nf 0 45 140 440 1152 2100 4704
τ = 10 t (ms) 906 923 928 916 960 950 921
τ = 50 t (ms) 906 973 978 965 1066 1060 1060

Table 6. Simulation time per time-step for combined FSI problems of increasingsize
Nm (×106) 0.08 0.16 0.29 0.63 0.95 1.54 2.50
Nr (×103) 0.17 0.52 1.12 4.48 7.84 14.56 24.64
Nf (×103) 0.16 0.42 0.84 2.10 3.36 5.88 9.66
t (ms) 45 74 120 230 343 522 820

number of SPH markers varies from about 76, 000 to more than2.5 million. Simultaneously, the number of rigid and flexiblebodies grow from 168 to more than 24, 000 and from 160 to al-most 10, 000, respectively (see Table 6). As shown in Figure 6,Chrono::Fluid achieves linear scaling over the entire range ofproblem sizes.
5. Conclusions
This contribution discusses details of an HPC approach tothe simulation of FSI problems. Relying on: (i) a La-grangian/Lagrangian formalism for the simulation of the fluidand solid phases, and (ii) GPU parallelism, Chrono::Fluid, thesoftware implementation of the proposed solution methodology,is suitable for the study of multi-phase/multi-component prob-lems such as particle suspensions, polymer flow, and biomedicalapplications.Chrono::Fluid has been shown to scale linearly in the dynam-ics of each phase independently as well as in the overall FSIsolution implementation. The dynamics of the fluid phase; i.e.the time propagation of the SPH markers, controls the overallsimulation time, and neither cross-phase communications norsolid phase simulation have a notable effect on the simulationtime. This represents one advantage of the adopted unified FSImethodology over co-simulation and asynchronous approaches.Chrono::Fluid, whose preliminary validation is discussed in [30],is open source and freely available under a BSD3 license.Several directions of future work are as identified as follows:(a) revisit the SPH marker numbering scheme in order to im-prove the spatial and temporal memory access patterns, thus in-creasing the effective bandwidth of Chrono::Fluid; (b) augmentthe current implementation for use on cluster supercomputers

0 4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Domain volume increase factor

S
im

u
la

ti
o

n
 t

im
e 

p
er

 s
te

p
 (

s) R2 = 0.9989

0

2

4

N
u

m
b

er
 o

f 
S

P
H

 m
ar

ke
rs

 (×
 1

06 )

R2 = 0.9998

 

 
0 4 8 12 16 20 24 28 32 0

20

40

N
u

m
b

er
 o

f 
so

lid
 o

b
je

ct
s 

(×
 1

03 )

R2 = 0.9968

SPH markers
Solid objects

Figure 6. Scaling analysis of Chrono::Fluid for FSI problems: simulation timeas function of combined problem size. In this experiment, the volumeof the simulation domain is increased, up to 32 times the volume ofthe initial domain, leading to proportional increases in the number ofSPH markers and of solid objects (both rigid and flexible bodies) asshown in the bottom plot (see also Table 6). As illustrated by the topgraph, the simulation time per time step varies linearly with problemsize. The coefficients R2 are specified for each linear regression.

that adopt a non-uniform memory access model and rely on theMessage Passing Interface standard; (c) investigate problemsat macroscale such as vehicle fording operations, which call forlarge scale simulations at low Reynolds numbers and possiblyin the presence of very large viscosity; and (d) gauge the po-tential of Chrono::Fluid in biomechanics applications such asblood flow in deformable arteries or heart, channel occlusion instroke, etc.
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